30,028 research outputs found

    Vlasov simulation of laser-driven shock acceleration and ion turbulence

    Full text link
    We present a Vlasov, i.e. a kinetic Eulerian simulation study of nonlinear collisionless ion-acoustic shocks and solitons excited by an intense laser interacting with an overdense plasma. The use of the Vlasov code avoids problems with low particle statistics and allows a validation of particle-in-cell results. A simple original correction to the splitting method for the numerical integration of the Vlasov equation has been implemented in order to ensure the charge conservation in the relativistic regime. We show that the ion distribution is affected by the development of a turbulence driven by the relativistic "fast" electron bunches generated at the laser-plasma interaction surface. This leads to the onset of ion reflection at the shock front in an initially cold plasma where only soliton solutions without ion reflection are expected to propagate. We give a simple analytic model to describe the onset of the turbulence as a nonlinear coupling of the ion density with the fast electron currents, taking the pulsed nature of the relativistic electron bunches into account

    Lessons from Non-Abelian Plasma Instabilities in Two Spatial Dimensions

    Full text link
    Plasma instabilities can play a fundamental role in quark-gluon plasma equilibration in the high energy (weak coupling) limit. Early simulations of the evolution of plasma instabilities in non-abelian gauge theory, performed in one spatial dimension, found behavior qualitatively similar to traditional QED plasmas. Later simulations of the fully three-dimensional theory found different behavior, unlike traditional QED plasmas. To shed light on the origin of this difference, we study the intermediate case of two spatial dimensions. Depending on how the "two-dimensional'' theory is formulated, we can obtain either behavior.Comment: 15 pages, 10 figure

    Studies of dynamic processes related to active experiments in space plasmas

    Get PDF
    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed

    Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    Full text link
    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass--charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org/pop

    Magnetohydrodynamics of the Weakly Ionized Solar Photosphere

    Full text link
    We investigate the importance of ambipolar diffusion and Hall currents for high-resolution comprehensive ('realistic') photospheric simulations. To do so we extended the radiative magnetohydrodynamics code \emph{MURaM} to use the generalized Ohm's law under the assumption of local thermodynamic equilibrium. We present test cases comparing analytical solutions with numerical simulations for validation of the code. Furthermore, we carried out a number of numerical experiments to investigate the impact of these neutral-ion effects in the photosphere. We find that, at the spatial resolutions currently used (5-20 km per grid point), the Hall currents and ambipolar diffusion begin to become significant -- with flows of 100 m/s in sunspot light bridges, and changes of a few percent in the thermodynamic structure of quiet-Sun magnetic features. The magnitude of the effects is expected to increase rapidly as smaller-scale variations are resolved by the simulations.Comment: accepted Ap
    corecore